Найти grad z в точке. Градиент функции

Краткая теория

Градиентом называется вектор, направление которого указывает направление максимально быстрого возрастания функции f(x). Нахождение этой векторной величины связано с определением частных производных функции. Производная по направлению это скалярная величина и показывает скорость изменения функции при движении вдоль направления, заданного некоторым вектором.

Пример решения задачи

Условие задачи

Даны функция , точка и вектор . Найти:

Решение задачи

Нахождение градиента функции

1) Найдем градиент функции в точке :

Искомый градиент:

Нахождение производной по направлению вектора

2) Найдем производную в направлении вектора :

где -угол, образованный вектором и осью

Искомая производная в точке :

На цену сильно влияет срочность решения (от суток до нескольких часов). Онлайн-помощь на экзамене/зачете осуществляется по предварительной записи.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Из школьного курса математики известно, что вектор на плоскости представляет собой направленный отрезок. Его начало и конец имеют по две координаты. Координаты вектора рассчитываются путем вычитания из координат конца координат начала.

Понятие вектора может быть распространено и на n-мерное пространство (вместо двух координат будет n координат).

Градиентом grad z функции z = f(х 1 , х 2 , …х n) называется вектор частных производных функции в точке, т.е. вектор с координатами .

Можно доказать, что градиент функции характеризует направление наискорейшего роста уровня функции в точке.

Например, для функции z = 2х 1 + х 2 (см. рисунок 5.8) градиент в любой точке будет иметь координаты (2; 1). Построить его на плоскости можно различными способами, взяв в качестве начала вектора любую точку. Например, можно соединить точку (0; 0) с точкой (2; 1), или точку (1; 0) с точкой (3; 1), или точку (0; 3) с точкой (2; 4), или т.п. (см. рисунок 5.8). Все построенные таким образом вектора будут иметь координаты (2 – 0; 1 – 0) =
= (3 – 1; 1 – 0) = (2 – 0; 4 – 3) = (2; 1).

Из рисунка 5.8 хорошо видно, что уровень функции растет в направлении градиента, поскольку построенные линии уровня соответствуют значениям уровня 4 > 3 > 2.

Рисунок 5.8 - Градиент функции z = 2х 1 + х 2

Рассмотрим другой пример – функцию z = 1/(х 1 х 2). Градиент этой функции уже не будет всегда одинаковым в разных точках, поскольку его координаты определяются формулами (-1/(х 1 2 х 2); -1/(х 1 х 2 2)).

На рисунке 5.9 представлены линии уровня функции z = 1/(х 1 х 2) для уровней 2 и 10 (прямая 1/(х 1 х 2) = 2 обозначена пунктиром, а прямая
1/(х 1 х 2) = 10 – сплошной линией).

Рисунок 5.9 - Градиенты функции z = 1/(х 1 х 2) в различных точках

Возьмем, например, точку (0,5; 1) и вычислим градиент в этой точке: (-1/(0,5 2 *1); -1/(0,5*1 2)) = (-4; -2). Заметим, что точка (0,5; 1) лежит на линии уровня 1/(х 1 х 2) = 2, ибо z = f(0,5; 1) = 1/(0,5*1) = 2. Чтобы изобразить вектор (-4; -2) на рисунке 5.9, соединим точку (0,5; 1) с точкой (-3,5; -1), ибо
(-3,5 – 0,5; -1 - 1) = (-4; -2).

Возьмем другую точку на той же самой линии уровня, например, точку (1; 0,5) (z = f(1; 0,5) = 1/(0,5*1) = 2). Вычислим градиент в этой точке
(-1/(1 2 *0,5); -1/(1*0,5 2)) = (-2; -4). Чтобы изобразить его на рисунке 5.9, соединим точку (1; 0,5) с точкой (-1; -3,5), ибо (-1 - 1; -3,5 - 0,5) = (-2; -4).

Возьмем еще одну точку на той же самой линии уровня, но только теперь в неположительной координатной четверти. Например, точку (-0,5; -1) (z = f(-0,5; -1) = 1/((-1)*(-0,5)) = 2). Градиент в этой точке будет равен
(-1/((-0,5) 2 *(-1)); -1/((-0,5)*(-1) 2)) = (4; 2). Изобразим его на рисунке 5.9, соединив точку (-0,5; -1) с точкой (3,5; 1), ибо (3,5 – (-0,5); 1 – (-1)) = (4; 2).

Понятие производной по направлению рассматривается для функций двух и трёх переменных. Чтобы понять смысл производной по направлению, нужно сравнить производные по определению

Следовательно,

Теперь можем найти производную по направлению данной функции по её формуле:

А сейчас - домашнее задание. В нём дана функция не трёх, а лишь двух переменных, но несколько иначе задан направляющий вектор. Так что придётся вновь повторить векторную алгебру .

Пример 2. Найти производную функции в точке M 0 (1; 2) по направлению вектора , где M 1 - точка с координатами (3; 0) .

Вектор, задающий направление производной, может быть дан и в такой форме, как в следующем примере - в виде разложения по ортам координатных осей , но эта хорошо знакомая тема из самого начала векторной алгебры.

Пример 3. Найти производную функции в точке M 0 (1; 1; 1) по направлению вектора .

Решение. Найдём направляющие косинусы вектора

Найдём частные производные функции в точке M 0 :

Следовательно, можем найти производную по направлению данной функции по её формуле:

.

Градиент функции

Градиент функции нескольких переменных в точке M 0 характеризует направление максимального роста этой функции в точке M 0 и величину этого максимального роста.

Как найти градиент?

Нужно определить вектор, проекциями которого на оси координат являются значения частных производных , , этой функции в соответствующей точке:

.

То есть, должно получиться представление вектора по ортам координатных осей , в котором на каждый орт умножается соответствующая его оси частная производная.

1 0 Градиент направлен по нормали к поверхности уровня (или к линии уровня, если поле плоское).

2 0 Градиент направлен в сторону возрастания функции поля.

3 0 Модуль градиента равен наибольшей производной по направлениювданной точке поля:

Эти свойства дают инвариантную характеристику градиента. Они говорят о том, что вектор gradU указывает направление и величину наибольшего изменения скалярного поля в данной точке.

Замечание 2.1. Если функция U(x,y) есть функция двух переменных, то вектор

лежит в плоскости oxy.

Пусть U=U(x,y,z) и V=V(x,y,z) дифференцируемых в точке М 0 (x,y,z) функции. Тогда имеет место следующие равенства:

а) grad()= ; б) grad(UV)=VgradU+UgradV;

в) grad(U V)=gradU gradV; г) г) grad = , V ;

д) gradU( = gradU, где , U=U() имеет производную по .

Пример 2.1. Дана функция U=x 2 +y 2 +z 2 . Определить градиент функции в точке М(-2;3;4).

Решение. Согласно формуле (2.2) имеем

Поверхностями уровня данного скалярного поля являются семейство сфер x 2 +y 2 +z 2 , вектор gradU=(-4;6;8) есть нормальный вектор плоскостей.

Пример 2.2. Найти градиент скалярного поля U=x-2y+3z.

Решение. Согласно формуле (2.2) имеем

Поверхностями уровня данного скалярного поля являются плоскости

x-2y+3z=С; вектор gradU=(1;-2;3) есть нормальный вектор плоскостей этого семейства.

Пример 2.3. Найти наибольшую крутизну подъема поверхности U=x y в точке М(2;2;4).

Решение. Имеем:

Пример 2.4. Найти единичный вектор нормали к поверхности уровня скалярного поля U=x 2 +y 2 +z 2 .

Решение. Поверхности уровня данного скалярного Поля-сфера x 2 +y 2 +z 2 =С (С>0).

Градиент направлен по нормали к поверхности уровня, так что

Определяет вектор нормали к поверхности уровня в точке М(x,y,z). Для единичного вектора нормали получаем выражение

Пример 2.5. Найти градиент поля U= , где и постоянные векторы, r –радиус вектор точки.

Решение. Пусть

Тогда: . По правилу дифференцирования определителя получаем

Следовательно,

Пример 2.6. Найти градиент расстояния , где P(x,y,z) - изучаемая точка поля, P 0 (x 0 ,y 0 ,z 0) - некоторая фиксированная точка.

Решение. Имеем - единичный вектор направления .

Пример 2.7. Найти угол между градиентами функций в точке М 0 (1,1).

Решение. Находим градиенты данных функций в точке М 0 (1,1), имеем

; Угол между gradU и gradV в точке М 0 определяется из равенства

Отсюда =0.

Пример 2.8. Найти производную по направлению, радиус- вектор равен

Решение. Находим градиент этой функции:

Подставляя (2.5) в (2.4), получим

Пример 2.9. Найти в точке М 0 (1;1;1) направление наибольшего изменения скалярного поля U=xy+yz+xz и величину этого наибольшего изменения в этой точке.


Решение. Направление наибольшего изменения поля указывается вектором grad U(M). Находим его:

И, значит, . Это вектор определяет направление наибольшего возрастания данного поля в точке М 0 (1;1;1). Величина наибольшего изменения поля в этой точке равна

Пример 3.1. Найти векторные линии векторного поля где -постоянный вектор.

Решение. Имеем так что

Умножим числитель и знаменатель первой дроби на х, второй-на у, третий- на z и сложим почленно. Используя свойство пропорций, получим

Отсюда xdx+ydy+zdz=0, а значит

x 2 +y 2 +z 2 =A 1 , A 1 -const>0. Умножив теперь числитель и знаменатель первой дроби (3.3) на с 1 , второй –на с 2 , третий на с 3 и сложив почленно, получим

Откуда с 1 dx+c 2 dy+c 3 dz=0

И, следовательно, с 1 x+c 2 y+c 3 z=A 2 . A 2 -const.

Искомые уравнения векторных линий

Эти уравнения показывают, что векторные линии получаются в результате пересечения сфер, имеющих общий центр в начале координат, с плоскостями, перпендикулярными вектору . Отсюда следует, что векторные линии являются окружностями, центры которых находятся на прямой, проходящей через начало координат в направлении вектора с. Плоскости окружностей перпендикулярны указанной прямой.

Пример 3.2. Найти векторную линию поля проходящую через точку (1,0,0).

Решение. Дифференциальные уравнения векторных линий

Отсюда имеем . Решая первое уравнение . Или если ввести параметр t, то будем иметь В этом случае уравнение принимает вид или dz=bdt, откуда z=bt+c 2 .

Лекция 15. «Дифференцирование функции нескольких переменных»

    Градиент функции двух переменных и производная по направлению.

Определение . Градиентом функции

называется вектор

.

Как видно из определения градиента функции, компонентами вектора градиента являются частные производные функции.

Пример. Вычислить градиент функции

в точке A(2,3).

Решение. Вычислим частные производные функции.

В общем виде градиент функции имеет вид:

=

Подставим координаты точки A(2,3) в выражения частных производных

В градиент функции в точке A(2,3) имеет вид:

Аналогично можно определить понятие градиента функции трех переменных:

Определение . Градиентом функции от трех переменных

называется вектор

Иначе, этот вектор может быть записан следующим образом:

Определение производной по направлению.

Пусть задана функция двух переменных

и произвольный вектор

Рассмотрим приращение этой функции, взятое вдоль данного вектора

Т.е. вектор коллинеарный по отношению к вектору . Длина приращения аргумента

Производной по некоторому направлению называется предел отношения приращения функции вдоль данного направления на длину приращения аргумента, когда длина приращения аргумента стремиться к 0.

Формула для вычисления производной по направлению .

Исходя из определения градиента, производную функции по направлению, можно посчитать следующим образом.

некоторый вектор. Вектор с тем же направлением, но единичной длины назовем

Координаты этого вектора вычисляются следующим образом:

Из определения производной по направлению , производная по направлению может быть вычислена по следующей формуле:

Правая часть этой формулы представляет собой скалярное произведение двух векторов

Поэтому, производную по направлению можно представить в виде следующей формулы:

Из этой формулы следует несколько важных свойств вектора градиента.

Первое свойство градиента следует из того очевидного факта, что скалярное произведение двух векторов принимает наибольшее значение, когда вектора совпадают по направлению. Второе свойство следует из того, что скалярное произведение перпендикулярных векторов равно нулю. Кроме того, из первого свойства следует геометрический смысл градиента – градиент это вектор, вдоль направления, которого производная по направлению наибольшая. Так как производная по направлению определяет тангенс угла наклона касательной к поверхности функции, то градиент направлен вдоль наибольшего наклона касательной.

Пример 2. Для функции (из примера 1)

Вычислить производную по направлению

в точке A(2,3).

Решение. Для вычисления производной по направлению надо вычислить вектор градиента в указанной точке и единичный вектор направления (т.е. нормализовать вектор ).

Вектор градиента был вычислен в примере 1:

Вычисляем единичный вектор направления:

Вычисляем производную по направлению:

#2. Максимум и минимум функции нескольких переменных.

Определение. Функция

Имеет максимум в точке (т. е. при и ), если

Определение. Совершенно аналогично говорят, что функция

Имеет минимум в точке (т. е. при и ), если

для всех точек , достаточно близких к точке и отличных от нее.

Максимум и минимум функции называются экстремумами функции, т. е. говорят, что функция имеет экстремум в данной точке, если эта функция имеет максимум или минимум в данной точке.

Например, функция

Имеет очевидный минимум z = -1 при x = 1 и y = 2.

Имеет максимум в точке при x = 0 и y = 0.

Теорема. (необходимые условия экстремума).

Если функция достигает экстремума при , , то каждая частная производная первого порядка от z или обращается в нуль при этих значениях аргументов, или не существует.

Замечание. Эта теорема не является достаточной для исследования вопроса об экстремальных значениях функции. Можно привести примеры функций, которые в некоторых точках имеет нулевые частные производные, но не имеет экстремума в этих точка.

Пример. Функции, которая имеет нулевые частные производные, но не имеет экстремума.

В самом деле:

Достаточные условия экстремума.

Теорема. Пусть в некоторой области, содержащей точку , функция имеет непрерывные частные производные до третьего порядка включительно; пусть, кроме того, точка является критической точкой функции , т.е.

Тогда при ,

Пример 3.2. Исследовать на максимум и на минимум функцию

    Найдем критические точки, т.е. точки, в которых первые частные производные равны нулю или не существуют.

Сначала вычисляем сами частные производные.

Приравниваем частные производные нулю и решаем следующую систему линейных уравнений

Умножаем второе уравнение на 2 и складываем с первым. Получится уравнение только от y.

Находим и подставляем в первое уравнение

Преобразуем

Следовательно, точка () является критической.

    Вычислим вторые производные второго порядка и подставим в них координаты критической точки.

В нашем случае, подставлять значения критических точек не надо, так как вторые производные являются числами.

В итоге имеем:

Следовательно, найденная критическая точка, является точкой экстремума. Более того, так как

то эта точка минимума.